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BRIEF OUTLINE OF RESEARCH FINDINGS

V This final report summarizes the work on ARO Grant Number

DAAG29-79-C-0082 from I May 1979 to 30 October 1982. The purpose of

this grant is to develop theory and techniques for small antennas

mounted on structures, for fnicrostrip antennas, and for k-pulse

applications.

Much of the research effort during this period is described in the

published papers which are reproduced in the Appendices.

First let us summarize our accomplishments related to small

antennas mounted on structures.

The theory and computer programs were developed for plane-wave

scattering by an infinitely long elliptic cylinder with arbitrary

surface impedance. The solution has the form of a series of Mathleu

functions. The calculated data show excellent agreement with GTD

calculations.

We investigated the characteristic modes of Garbacz and Harrington

for conducting strips, strip gratings, thick tubular dipoles, and

periodic collinear arrays of thick tubular dipoles. For the conducting

strip, it was found the characteristic modes coincide with the

elgenmodes of the degenerate elliptic cylinder expressed in terms of

Mathieu functions. For periodic structures such as the strip grating

Ih and the collinear array of dipoles, when the spacing is less than the

wavelength, a single characteristic mode is induced by a plane wave with

ii normal incidence.
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In most applications it is difficult to obtain more than three or

four of the characteristic modes. In the complex frequency domain, new

techniques are required for characteristic modes since the impedance

matrix is no longer positive definite. For these reasons, we

investigated the conjugate modes of Inagaki. Even in the complex

frequency domain, it is always easy to obtain a complete set of

conjugate modes. We found that the conjugate modes reduce to the

natural modes at the poles of the conducting body. For the strip and

the tubular dipole, graphs were plotted to illustrate the lowest-order

characteristic modes and the conjugate modes.

We applied the double Fourier transform to develop the theory of

thin-wire and thin-strip antennas located on or near the air-earth

interface. Previous investigators have used the Fourier-Bessel

transform for these problems, but the double Fourier transform has

significant advantages. For a thin-strip antenna near the air-earth(

interface, our technique requires double numerical integration whereas

the earlier methods require five-fold numerical integration. The

Fourier-Bessel method encounters a singularity when the antenna is on

the interface, but the double Fourier transform technique is well

behaved in this situation.

Next, we applied the double Fourier transform to calculate the

current distribution and impedance of a horizontal strip dipole as a

function of distance from the air-earth interface. The calculations

include the cases where the dipole is on the interface, buried in the

earth, and elevated above the interface. Although the impedance varies

4
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rapidly with distance when the dipole is near the interface, it appears

that the impedance is continuous across the interface.

We also considered a skewed strip dipole near the air-earth

j interface. The skewed dipole is neither vertical nor horizontal, but is

oriented at an arbitrary angle with respect to the interface. The

I. double Fourier transform proved quite advantageous for this application.

With this approach, the number of Sommerfeld-integral evaluations is

reduced by a factor of ten in comparison with the conventional Fourier-

Bessel transformation.

Next let us summarize our research accomplishments related to

,o microstrip antennas.

iWe applied the double Fourier transform to develop the theory of

microstrip antennas. In calculating the self impedance of a rectangular

I microstrip antenna, our new computer code reduces the computational

expense by a factor of ten.

In many applications, the patch model of a microstrip antenna will

involve trapezoidal patches. Therefore, we considered the mutual

impedance of two trapezoidal patches and developed the theory far enough

[to show that the transform approach is quite feasible for this

application.

[Finally, let us summarize our research related to k-pulse

applications. We extended the k-pulse theory to Include the effects of

[the generator impedance at the transmitting antenna and the load

impedance at the receiving antenna. For numerical calculations, we

considered two center-fed cylindrical-wire antennas with the following

.! 5i
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generator and load impedances: 0, 50, 916, and - ohms. We used the

frequency-domain moment method to calculate the antenna impedance and

effective length at many frequencies. The effective length was

calculated for broadside incidence and also for an angle of 45 degrees

away from broadside. From these data we employed the Fourier transform

to calculate the following k-pulse waveforms: the generator voltage

vg(t), the incident far-zone field waveform Ei(t), and the received

voltage waveform vr(t). A manuscript is being prepared to present these

new results.
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Radio Science, Volume 14, Number 6, pape 957-959. November-December 1979

Mutual impedance between vertical dipoles over a flat earth

J. H. Richmond and E. H. Newman

The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering, Columbus, Ohio 43212

(Received January 23, 1979; revised July It, 1979.)

The fields of a vertical dipole and the mutual impedance between vertical dipoles over a flat
earth are expressed in terms of a Sommerfeld integral.

1. INTRODUCTION A " j (P')e - z(

The use of vertical wire antennas, or arrays of [
vertical wires, over the earth is common. This where z, and z' denote the end points of the line
problem can be analyzed by using the method of source and I(z') represents the current distribution
moments [Harrington, 19681, where the effects of with the time dependence e "' suppressed.
the flat earth are accounted for by modifying each By expanding the spherical wave exp (-jkR)/R
element in the impedance matrix. The computation in a spectrum of cylindrical waves, we obtain )
of the modification to a single element in the matrix
involves the numerical evaluation of a Sommerfeld - ' F(-t e"
integral [Sommerfeld, 19641. With sinusoidal bases A 1 JO(3p) d13 (2)

and point matching, it has been shown [Miller et

al., 1972] that a single evaluation of the Sommerfeld " =132 k2  
(3)

integral suffices for each impedance element. Miller ,2
et al. report a computation time of 20 s on a F(z')e-"dz' (4)

CDC-6600 computer for impedance of a vertical ;
half-wave dipole over the flat earth. In view of where z is less than z'. The electric field intensity
this computational expense, they present data based is given by
on a 5-segment antenna model, although these data
differ by 8% from those with a 21-segment model. 4 ( 8A2

They present the theory based on enforcement of E,= kA + "(5)

the integral equation on the axis of the wire. E

In this paper we present the general formulation = cV JVJ0 (3pXF/y)e" d%3 (6)
and show that a single evaluation of the Sommerfeld

integral suffices for almost any choice of basis and
testing functions. Instead of matching on the axis, where C = -j-q/(4irk) and -q is the impedance

we present the theory appropriate for enforcement of free space.
of the integral equation on the surface of the wire. Now let the xy plane be the air-earth interface.
More accurate data are presented for the impedance With the field in (6) incident on the interface the

of a center-fed vertical wire versus height above reflected field is given by

the earth, and it is found that our calculations are
significantly faster than those quoted above. E, = C pl'RJoQ, XF/-y)e " dP3 (7)

2. FIELD OF VERTICAL DIPOLE where the reflection coefficient R is a function of
For an electric line source located on the z axis -j and the parameters of the earth; (p, 4P, z) denoteFran feleactc vnecource otedalh onley axcylindrical coordinates with origin on the interface

in free space the vector potential has only a and line source on the z axis.
component given by Now consider a tubular vertical dipole with radius

ce.ngbiO 1979 by, e Ammen, Gopymoa U.n,.. 'a,' current distribution I(z'), and surface current

0041414M/79/112097S01.00 957
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[ 95 RICHMOND AND NEWMAN

density uniformly distributed around the tube. The the functions F and G can be obtained in simple
reflected field for this source is found from (7) closed form. Thus we see from (12) that a single
by using the addition theorem for the Bessel function evaluation of the Sommerfeld integral is sufficient
and integrating around the surface of the tube: to calculate each of the mutual impedance terms

Z,.. In the sinusoidal Galerkin formulation the

SC P'Jo(a)Jo(ApXF[y) e-"'d (8) basis and testing functions are

where p is measured from the axis of the tubular .(z) sin kh- (14)

source. sin kh.

3. MUTUAL IMPEDANCE OF VERTICAL DIPOLES .(z) sin k(h. - Iz - z.1) (15)
sin kh.

The mutual impedance between tubular vertical where h_ and h. denote the segment lengths. Func-
dipoles is given by tion m extends over the two segments which inter-

1 gg sect at z,. and function n extends over the two
Z2= -- , J2E, ds (9) segments which intersect at z.

I, and 1, denote the terminal currents, and the 4. NUMERICAL RESULTS
integration extends over the cylindrical surface of
dipole 2. Dipole 2 has radius a2, current distribution Figure I illustrates the impedance of a half-wave
12(z), and uniform surface current density -J2 around center-fed vertical wire. Here h denotes the distance
Sthe tube. The z component of the field of dipole from the air-earth interface to the center of the
I is given by wire. These data were calculated with the sinusoidal

Galerkin formulation. The wire was divided into
E, = E ° + E, (10) 30 segments, so there were 29 equations and 29

where the first term denotes the free-space field unknowns. In Figure I the trends are similar to
and the second term is the field reflected from
the interface. From (9) and (10), K I I I ,

Z12 = Z°. + Z"' (11) FREQUENCY 3 3 MNz
WIRE LEN(TH 0.5k

where the first term is the mutual impedance in 120 WIRE RADIUS oa 5xO' --

free space and the second term is the change in 120
mutual impedance arising from interface reflection.

Using (8) for the reflected field, invoking the ; 100

addition theorem, and integrating around the surface R=€ RESISTANCE

of dipole 2, we ind 0 -

Z'-- p='y/-so PARAMETERS OF THE EARTH
12 0.44 100

I w • 0.003 mho/m
Jo(a,)Jo(fa,)Ja(d)FGdo3 (12) -

G(-y) 1, (zle dz (13)

0 40 REACTANCE

• . - The horizontal distance between the dipole axes
is denoted by d, and z, and z2 are the end points

"of dipole 2. 2Oo.51 . 01 1 V• al,,' A.02S 0.30 0.35

In moment method applications the current dis- HEIGHT ASOVE EARTH hf/
tributions 1.(z') and I.(z) represent the basis func-
tions, and (12) determines Z,.. For any simple Fig. I. Impedance of center-fed vertical wire versus height
basis functions it is apparent from (4) and (13) that above The earth.

t9
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MUTUAL IMPEDANCE BETWEEN VERTICAL DIPOLES 959

those in Figure 2 of Miller et al. [1972], but the for a = 0.007 X, however, surface matching is
data agree more closely with their 2 1-segment results required for accurate results and, indeed, for con-
rather than the 5-segment results they present. vergence.

If the 20-s computation time quoted by Miller
et al. applies to their 5-segment model, our corres- Acknowledgment. The work reported in this paper was
ponding 6-segment calculations are 100 times faster, supported in part by contract DAAG29-79-C-0082 between the

Department of the Army. U.S. Army Research Office, and
If it applies to their 21-segment model, our 22-seg- The Ohio State University Research Foundation.

ment calculations are 12 times faster. We employed
a simple Newton-Cotes integration as opposed to
their adaptive integration for the Sommerfeld inte- REFERENCES

gral. In addition, our free-space impedance terms Harrington, R. F. (1968). Field Computation by Moment Meth-

Z' . are in simple closed form, whereas theirs may ods. 229 pp.. Macmillan. New York.

require numerical integration. Miller, E. K.. A. J. Poggio, G. J. Burke, and E. S. Selden

Surface matching is slower than axis matching, (1972). Analysis of wire antennas in the presence of a conduct-

and the two techniques give essentially the same i half-space, 1. The vertical antenna in free space. Can.
J. Phys., 50, 879-888.

results for wires with small radius as in Figure I. Sommerfeld, A. (1964), Partial Differential Equations in Physics,

For larger radii such as the often quoted results 335 pp., Academic, New York.
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APPENDIX B

ON THE EDGE MODE IN THE THEORY OF TM SCATTERING BY A

STRIP OR STRIP GRATING

I.

1.
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IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. AP-2s, NO. 6. NOVEMBER 1990 883

On the Edge Mode in the Theory of TM Scattering by a Strip or Strip Grating

JACK 1-. RICHMOND. trtti.ow, iht1th

Abstrac--C6nsider a plane wave incident on a perfectly conducting our calculations with three unknowns show excellent agree-
strip (or strip, -. i). and let the incident electric vector be parallel ment with the current distribution obtained in 171 with 25
with the edges vi tie strip. If the edge mode is included among the unknowns. For a strip grating with normal incidence and
basis functions, it is found this greatly improves the convergence of spacing less than the wavelength, it is found the current
the moment-method solution. Numerical data are included for the distribution has the constant phase property of a character-
reflection coefficient of the strip grating. To correct an error in the istic mode 18 1, 19 ].
previous literature, the rigorous solution Is tabulated for broadsidebacksctter from a single strip. Although our technique shows some similarity to the

"asymptotic anticipation method" of Neureuther and Zaki

[151, we introduce several improvements. In their discus-
1. INTROI)UCTION sion of plane wave scattering by a wire mesh, luill and Wait

IBLIOGRAPItlES on strip gratings are available in I I 1161 use related techniques to improve the convergence.

B and ( 2 1, and a chapter on scattering by a strip is included We consider a grating or a strip with perfect conductivity,
in 131. For a related geometry, Minor and Bolle 141 include infinite length, and infinitesimal thickness. The time de-

the edge modes in an efficient formulation for shielded micro- pendence ei '0 is assumed and suppressed. At first the cur-

strip, In scattering by a strip, Shafai and EI-Moazzen 15] use rent density on the strip is expanded in a Fourier series, and

a transformation to treat the edge singularities in the current a system of simultaneous linear equations is developed for the

distribution. Tsai et al. [61 sample the current function at Fourier coefficients. Then the current distribution is expressed

progressively smaller intervals near the edge. Wilton and as the sum of an edge node plus a Fourier series, and it is
Govind 171 incorporate the edge conditions with subsectional found that the simultaneous linear equations can be obtained

bases. In (61 and (71, the objective is to obtain more accurate readily from tile previous expressions. The next section
calculations of the current distribution. Their techniques considers a strip grating with oblique incidence, but for the
evidently did not improve tie convergence of the solution. sake of brevity the remainder of the paper considers normal

In this paper we develop the theory of scattering for a incidence.
strip anti a strip grating. When the basis functions include tile
edge mode, it is shown this greatly improves the convergence II. TIll ORY OF STRIP (;RATING WITII OBLIQUE

of the moment-method solution with entire-domain expansion IN('II)1:NC" 

functions. For a strip with width equal to the wavelength, Consider a tijie-harmonic plane wave in free space to have

ohlique incidence on a periodic planar array of thin con-
Manuscript received November 26, 1979: reviled May 27, 1980 ducting strips as in Fig. I. -ach strip has width w 2h and s

This work was supported in part by Contract )AAt;29-794-Ot02 be- denotes the spacing. The : axis coincides wilh the axis of
tween l)epartmnent of the Army. I.S. Army Remarch llie, and lilt one of the strips, and She incident electric field intensity is
Ohio State University Research IFoundation.

The author is with the FlectruScienve Laboratory. I he Ohio State
University. Columbus, Ofl 43212. (.') e n

0018.920X/O/I 1100 0J83S0.75 0 1980 I'.-
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... -A of simultaneous linear equations:

b1Z61 = V, u=0. ±1, ,±2, ,(12)

.Zil - Fin *Fl (13)
2sw

Fig. I. Plane wave with oblique incidence on strip grating, where V, = 0 except Vo = E0.

The reflection and transmission coefficients of the strip
where k -- .The scattered field is grating are given by

• Eoe/kysin 0 ane-?nlxle J2nWYls (2) R=o(4
-. _Iaan0 R =a0  (14)

T= I +R. (15)

Hy s = _ Eo sgn (e ysin _ anne- 7nixleJ2 wY/s (3) To obtain numerical data, we truncate the series in (12) and
u__ use matrix inversion to solve these equations for the constants

b. In view of the basis and testing functions used, ( 12) and
IN 2 = (k sa + 2nft/s)2 - k2 . (4) (13) may be considered the "Fourier-Galerkin formulation."

We usually expect the Galerkin formulation to converge
where sgn (x) - I for x < 0, and + I for x > 0. faster than a point-matching solution. In this application,

Let us expand the surface-current density on the strips however, the two techniques show equal performance. The
in a Fourier series: only advantage of the Galerkin method is that it yields a sym-

metric matrix Zil. It is, however, a distinct advantage to treat

J ie kysin 01 blei W'Y /h. (5) the constants bI as the unknowns in (12), rather than using

the an as the unknowns as in 115 1.

From the boundary condition on tangential H. Ill. STRIP GRATING WITH NORMAL INCIDENCE

For normal incidence (0 = 0), it is convenient to express
EoYan.ne12nffY/ the scattered field as

-I0.Ski7lbge ihwyh, -h < < h =
(6) is zE 0 ±ane- lX cos(2nfry/s) (16)

0, in the apertures 0

where r = \Nfi7. We multiply both sides of (6) by e-i 2 ,lwY and the current density as
and integrate over the region -s/2 <y <s12 to obtain

N

do =-lwbol(sEo cos 0) (7) i= bIcos(Irylh). (17)
0

On -= biFn (8) By enforcing the boundary condition on tangential II (with
2SnE° testing function cos 2nny/s), we find

FinF= I e 12 r(I w - n ls)y dy. (9) a -jkwe, N

an, =b rbGin (18)
.rV,,Eo 0

. By forcing tangential E to vanish on the conducting strips, we
obtain from (I) and (2) Gin = (lI/w) coshry/h)cos(2nir'/s)dy (19)

YaOS (219) , h<y<h.(0

ane yl#=-I, -h<y<h. (10) where en = 2 except eo = 1. By forcing tangential E to vanish
on the strips we find

We multiply both sides of (10) by e- pl y/h and integrate
over the region -h <y <h to obtain .manCOs (2ny/s)--.- , -h<y <h. (20)

-W, U1i 00
anF''i 0, if O ) Multiplying (20) by cos iwa,/h and integrating over the range

U~~~ <),f 0<h yields

where an asterisk denotes the complex conjuptc and Fin is - [ -0.5, if: = 0
defined by (9). In (II) let us replace an with the equivalent 41,,G,# = (21)j . quantity from (7) and (8). This yields the following system n. 0, if i 0.

13



RICHMOND: THEORY OF TM SCATTERING 885

From (18) and (21), Lquation (29) can be rearranged as follows.

N N

bZ, = Vi, i = 0, 1,2, ",, N (22) c ,ZCA'= V,. i 0, 1, 2, ", N (30)
I0 1=0

(2jk -/s~ eGinGi (23) Zil' -Z for I< N (31)Zil (2jki w/s) .iG#fn(3

n=O-

ZiN' = i e.,Jo(mlrZim (32)
where V1 = 0 except V0 = Eo . The impedance matrix Zil is #11=0
symmetric. The reflection coefficient is given by R = no, and
ao and b0 are related by (7). where Zu1 and Zim are given by (23) and Vi = 0 except Vo =

If the incident field is E0 . The matrix Za' is not symmetric.
We could obtain a symmetric matrix by using the edge

i= Eoe'mx cos (2miry/s), mode (instead of the last cosine term) as a testing function
with (20) to derive the last equation (i = N) in (30). In this

the solution is given by (16)-(19) and (22)-(23) with case ZNm' = ZmN' and Vi = 0 except Vo = VN = E0 . How-
ever, slightly better convergence is obtained with the unsym-

Vi = 2EoGim,. metric system in (30)-(32).

V. SINGLE STRIP WITH NORMAL INCIDENCE
IV. STRIP GRATING WITH EDGE MODE When a plane wave has normal incidence on a single strip.

The current distribution J(y) has singularities at the edges the scattered field can be expressed as follows:
of a strip. Thus, when J is expressed as a Fourier series, the
series has slow convergence and one must invert a rather :s-
large matrix to obtain an accurate solution. To improve the E E 0  A cosgye dg (33)
situation, we may express J as the sum of an edge mode (to 0

take care of the singularities) and a Fourier series. In this -E 0 sgn (x)
case the Fourier series should converge rapidly since it repre- Hi,' = 7,A cos gye -YXI dg (34)
sents a well-behaved function. iki7

For normal incidence, a suitable edge mode for the current 2  2  2

distribution on a strip is _ k (35)

2 Let us express the current density on the strip as a Fourier
J= (/w) N (24) series:

N

Je = ('w) . etio(r) cos (lmy/h) (25) i = Y b cos (lry/h). (36)
0 0

e (The edge mode will be introduced later.) The boundary con-
e i J(y)dy (26) dition on tangential I leads to

where Jo(Ifr) denotes the Bessel function. The function J, has
the correct behavior in the neighborhood of each edge of the o yA cos gy dg
strip.

For normal incidence, let us express the current density N
on the strip as the sum of the edge mode and a Fourier series: --(0.5 jk?/Eo)'bD cos (Iry/h), -h < y < h

S--, z cl cos (Ifry/h). (27) ,
0

(37)
Using (25) for/f and comparing (I 7) and (27), we find Multiplying both sides of (37) by cosgjy and integrating both

bi = ct + (llw)eJo(r). (28) sides over the range 0 <y < -, we obtain

From (22) and (28), - Nkrht "

= . . ...... bG, (38)

CN j eJo(lff)Zii + N CiZl = (2) 291
I0 1-0

where v"N  11w denotes the amplitude of the edge mode. 0 (/1 cos (Icy/h)cos (g d. (34)

0'z ., . 1 ,z .t . . _r. .
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The boundary condition on tangential E leads to .__ _I -- T --
0. 6.J~cosId~=-T -hyh (40

0 

6

Multiply (40) by Cos (iffy/h) and integrate over ithe range06
0< y < hto obtain0.

0 0.2

10.4

0~~~~~~~~~~ 0. . . 081012141 .

0 0,wt omlicdne

w here V l = 0 x et (4
0  

0.1.

Nolt us expYwjres thei curen denit on3 the.Rfeto cefceto eretycnutn strip astrating TT ~

sum of the edge mode and a Fourier series as in (27). Once 2064 - EDGE MO0DE PLUS2 FOU2RIER SERIES

again we obtain (30)-(32) with Zi1 given by (43).
By integrating the Current density across the strip, it is 0.63 FORE ERE LN

found the current is I = wbo wc0 + WCN. In the hroadside 2 Udirection (=0) the scattered far-zone field is Z STRIP WIDTH '

U.0.61 -STRIP SPACING: *1.5k

W

(kvjl/4) e(4
Virkjo 0.590 ) 2 4 6 8 10 12 14 16 IS 20

For normal incidence, the backscatter echo width is MATRIX SIZE ( N*tI

k12  Fig. 3. Convergence curve for reflection coefficient of strip gratinig
We = 2ffpi~i Is EsI IEE 12 =k 72 x (45) with nIornal incidence.

current distrihution generates an electric field which also has
constant phase across the strip. When the spacing exceedis X~,VI. NUMERICAL RESULTS the phase ofi is no lunger constant.

Fig. 2 illustrates thse reflection coefficient versus spacing When the strip width is just slightly smialler tihan the spac-
for a strip grating with normal incidence. When the spacing is ing, it is found the calculated current density J approaches the
less than the wavelength, these data show satisfactory agree- physical optics approximation J =2 /11. With the edge modeI - m nt with the measurements of Primich 1101 and the formti- formulation of Section IV, good results are obtained even
las of Marcuvitz Il 1. with large spacing such as s =20A or s =5O0k When the spac-

Fig. 3 shows the convergence properties of our calculations ing is large, the calculated reflection coefficient agrees closely
with (22) and (30). For numerical calculations the series iii with the physical optics approximation R =it/Is.

I.(32) is truncated after Al terms, and best results are obtained Fig. 4 illustrates the backscatter echo with of a single
if M is greater than N in (30). Good results are obtained with strill with broadside incidence. 'Ihe momient niclfod (Section
M = 20 and NV = 5 for 0 < w/A < 0.5 or NV = 10 for 0.5 < V) shows excellent agreement with (the rigorous solution.

W/. <l. ig. 5 shows the convergence properties of oni calculations.
Accurate current distributions are not obtained when J is Macrakis ( 121 presents Ilite rigorous solution for tlie strip

expressed as a Fourier series as in Section 111. Suppose, for in terms of Mathieu functions. We used the Nlithtien sub-
example, we choose NV = 20 in ( 17) andi (2 2). Then~ we find routines of Hlodge 1131 to tabulate the rigorous data ,n

the calculated current distribution has 20 pronounced rip- Fi1g. 4 and Table 1. Our iigorous dlata agree with those ofples across the strip. These false ripples are not observed with Maicrakis in tile range 0.318 < w/A < 0.955 whsere tabulated
the edge-mode formulation in Section IV. Mathieni functionF' were available it) himt. However, our dtais

For 3 strip grating with normal incidence and spacing s differ greatly front his land fronm thie "exac:t' data of king
less titan X, it is found the current dist ri but ion Aty' has con- anit Wit 1141)1 in the region %%-/X < '9.2. Foir narrow st11115
stant phase. Although the magnitude oif J varies across the withs itA < 0.1, our data agree with calculitions based oil the
strip, the phase of J is precisely uniform. T'his is observed equivalent round wile with radius a = %4 (rather thitn a
for all values of the strip width %,. r'hus Ayt) qlualifies is a i2 as used in I 121 ,Ind 11411.

characteristic mode' (81, (91 of the gaing, since this With entire basis functions, oitvergnce greatly impross

15
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when the edge mode is included among the basis functions.
It remains to be seen whether similar improvement can be

to-- --T -T-- v T-- - obtained with subsectional bases or with three-dimensional
a- scattering geomectries such as the rectangular plate.
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On the Edge Mode in the Theory of Thick Cylindrical

Monopole Antennas

JACK H. RICHMOND, FELLOW, IEEE

Abstract-The Fourier transform is employed to develop the theory
of thick cylindrical monopole antennas. The tubular monopole with an
open end is considered as well as the solid monopole with a flat end.
The unknown current or field distribution is expanded in a Fourier
series, and Galerkin's method is employed to develop simultaneous
equations for the Fourier coefficients. When the edge mode is included
among the basis functions, it is found this greatly improves the
convergence of the moment.method calculations. Numerical data are
included, showing excellent agreement with experimental measure-
ments of the monopole admittance.

i. INTRODUCTION

Einarsson [ II presents solutions for tubular and solid cylin-
drical-wire antennas. These solutions are based on a delta-gap
model of the generator and thus are not suitable for calcu-
lating the susceptance. This objection applies also to the for-
mulations of Chang 12] and King and Wu 131. Otto 141 em-
ploys a realistic magnetic-frill model for the generator and
reduces Einarsson's formulation to one equation with one
unknown (rather than eight simultaneous equations). It has
not been demonstrated that Otto's approximations are appli-
cable to electrically thick antennas, however.

Chang [5] presents a moment-method solution for the
thick tubular monopole based oni Hallen's integral equation
with an extra term corresponding to a radially extended source
in the aperture of the coaxial feed cable. Thus an excellent
solution is available for the thick tubular antenna, but evi-
dently not for the thick solid cylindrical antenna.

King I I II presents measured admittances of thick mono-
poles, theoretical results for thick tubular monopoles, and a
correction term for higher order modes in the coaxial feed
line.

In this communication we present moment-method solu-
tions for tubular and solid cylindrical antennas. In comparison
with previous formulations, ours are straightforward. It is

demonstrated that the convergence of the solution is greatly
improved when the edge mode is included among the basis

Manuscript received January 3, 1980; revised April 29, 1980. This
work was stpp(irted in part by Contract I)AAG29-79-'-0082 between

the Army Rescjrcl Office and the Ohio State University Research
Foundation.

The ata hor ii wit the ll"ctroSL'cnce I ahorator,, Department i ot
El-ectrical l.ntiincefing, the )hio Slate U1nivcrityCouinms,tI 43212.

()OI-182bX/)ttl/I li0t)-0I9ls,1ltl 75 () 98t) I11 I.
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functions. Numerical results are included, showing excellent MAGNETIC

agreement between the calculated and measured admittances. I L

periodic collinear array of cylindrical wires is considered 7V ~briefly. When the incident field is independent or the coordi----
nates 0 and z, an interesting property is observed. For all 1
v-lues cif the wire radiu% a. the wire length I. and tc .t,:,(ir.l, 16 -

s (with s < A), the induced current distribution (z) has pre-
cisely constant phase (i.e., the phase is independent of z).
The electric field generated by this current also has constant Fig. I. Center-fed cylindrical antenna.
phase over the cylindrical surface. Thus the solution qualifies
as a "characteristic mode" as defined by Garbacz (6] and Har- It is convenient to exprcss the current distribution on the
rington and Mautz 17j. When the spacing t exceeds A, this antenna in a Fourier series as follows:
constant-phase property is lost.

II. THE CENTER-FED TUBULAR DIPOLE 1(z) = bcos (lez/L) (8)

Fig. I illustrates a center-fed tubular dipole antenna. This
dipole is equivalent to a monopole antenna fed via a coaxial where I is a positive odd integer. The scattered field must sat-
cable through a large ground plane. The tube has perfect con- isfy the boundary condition
ductivity and infinitesimal wall thickness, and the time de-
pendence ei' 1 is understood for the electromagnetic field. The H11(a +, z) - Ho0 (a -, z) = J,(z) (9)
field is the sum of the incident field (E', H') from the mag-
netic frill and the scatterod field from the electric surface cur- | l(z)/(21a), -h < z < hrent on the tube. The field is independent of the angular co- J) = | / O ,(10)

ordinate 0, and the only nonzero field components are E.,
E., and 11. The scattered field may be expressed as follows:

where J, denotes the sum of the electric surface-current den-
sities J, on the inner and outer surfaces of the tube. From (I),

Ho' =(jk/ ) f AKo(a)11 (yp)cos(gz)dg, P<a (I) (2),and(9),

" ~ k (AI) cosgz)dg --J(). (l

Hos =---(Jk/i) Ao(7a)K1(yp)cos(gz)dg, a<p (2) j7a ( )

7 72 = 9 -2 k 2  (3) We multiply both sides of (i) by cos (g'z) and integrate over

the region 0 < z < - to obtain

where k = wv/'e, i/ = V' /, ,, and K, are the modified
Bessel functions, A is a function of g, and (p, 0, z) denote the A = bG .  (12)
coordinates in the circular cylindrical system. Except for !he Ir2k I
conducting tube, the medium is homogeneous with parameters
p and e. The scattered field component Ezs is continuous In (5) let us replace A with the equivalent quantity from (12).
across the boundary at p = a. Setting E,(a, z) = 0 on the per- This leads to the following system of simultaneous linear equa-
fectly conducting tube, we obtain the integral equation for tions:

the tubular dipole:iN
1;f bjZj = V, i = 1, 3, 5, -",,N (13)

7A1o(7a)Ko(ya) cos (gz)dg = -E'(a,z), --h<z<h. 1=,

S(4) ZjI " 21o(7fa)Ko(ja)(;,Gi dg. (14)

We multiply both sides of (4) by cos (nz/L) and integrate
over the region 0 < z < h to obtain: The impedance matrix Z 1 is symmetric. The current dis-

tribution represented by (8) is a periodic .ven function with
fAIo(UYKo(wx)G3d 1  period 41h. Since each term vanishes when z = h, (8) repre-

^f/(f)0(I)Idg = V4  (S) sents a Current distribution which vanishes at each end of the
0tubular dipole.

Is Corresponding to the TEM mode in the coaxial feed cable.
G= I cos (gz) cos (ifrz/L) dz (6) let the frill in Fig. I have the following magnetic surface-cur-

rent density:

VaIn Ea, . ) cos (wzL) d: (7) hi, = II)
0 p In (bla)

where, I 2h. where 1/1 1 denotes the glineralor voltage anti h is the outer

19
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radius of the coaxial cable. For p < a, the free space field of
the magnetic frill is 181

Rol V'-af (Iy j[K0(a) - K(,yb) 2d - 1

(I'i. 2 Periodi colinear arr.% of c% inders

*1 t,(p) cos (gz)dg. (16)

From (7) and (16), the excitation voltages for the center-fed The idea is to separate out the rapidly varying components of

tubular dipole are the current distribution. Then the Fourier series may converge
rapidly since it represents a smooth function. With the

0" moment method, one must invert the impedance matrix Z,j
Vi = V11 [Ko(va)-K 0 (yb)])o(7a)G1 dg. (17) to determine the Fourier coefficients and the antenna admit-

n' in (b/a) tance. Thus any technique that reduces the size of the matrix
Z1, implies a reduction in computational expense and storage

The admittance of the tubular dipole is determined as follows: requirements and the capability of solving longer dipole an-

tennas.

Yt I =1(O)/Vl I = (/VI 1) b,. (18) In the vicinity of each end of the tubular dipole, it is
known that (z) must behave like the square root of the dis-
tance from the end 191. Thus a suitable edge mode is

Now consider the scattering problem where a plane wave
has broadside incidence on the conducting tube. The incident l(z) CNVI - (z/h)2  CN ,_ d, cos (lrz/L) (25)
field is

E, = Eoe-ikx - EoJo(kp). (19) d, =(2/1)J1 (1/2) (26)

From (7) and (19), the excitation voltages are where J, denotes the Bessel f,,nction. There is only one un-

2h known constant c,,v in the edge mode.

Vi = H - EJo(ka) (20) The current function 1(z) often has large slope in the vicin-
nfl ity of the feedpoint, which in the present case is at the center

of the dipole. This component of i(z)" is the same as the cur-
where n = (i - 1)/2. Of course, if tile cylinder has a large rent distribution l0(z) on an infinitely long cylindrical an-
radius, the higher order modes with cos (mO) behavior cannot tenna. Thus a suitable feed mode is
be neglected.

Finally, let us consider a periodic collinear array of tubular
dipoles. As in Fig. 2, let s denote the center-to-center spacing. I.(z)- 10 (z) cos (irz/L) = f cos (Irz/L). (27)
Equations (7), (8), and (13) apply, and

The faclor j os nzI. I is included so the feed mode, like all
2 tile-Othevir modcs in !24). will vanish at the ends of tie dipole.

Z "n en n 10(yna)Ko(,na)GjnGi (21) The current distribution on the infinitely long cylinder with
kr =0 magnetic-lrill excilation is 18J:

7"2 = (2ni/s)2 - k2  (22)

h dz (23) 1o(z) - 2jk V " [Ko(Ya)-- Ko(yb)] cos (gz) dg
Gin = oso, (h.r/L) cos (2n...) d (23) ?7 In (b/a),o 2 Ko(*°)

where en = 2 except c0 = 1. When a plane wave has broadside (28)

incidence on the array, the voltages VI are given by (20). An efficient subroutine is available for calculating the function
Equations (13) and (20)-(23) were programmed for the digital 10(z). The Fourier coefficients f, for tile feed mode are calcu-
cornputcr. When the spacing r is less than or equal to A, it is lated via numnerical integtation. r'he feed mode contains no
found the complex Fourier coefficients h, all have the same unknown constants.
phase angle. It follows from (8) that fil phase of /(z) is inde- From (8). (24). (25), and (27),
pendent of z.

b, = C1 + CNd+ +-fi. (29)
Ill. EDGE MODE FOR TilE TUBULAR DIPOLE

Let us express the current distribution on the tubular In (Ii) we replace fi with the eqnivilenltiantity from (29)
dipole as the sum of an edge mode. a feed mode. and a Fou- to obtain fite following system of simultaneous linear equa-

rier series, as follows: tiots:

A

1() 4(Z) + IAz) + c c cos (Irz/L). (24) ,,z,, = I,', i= 1,-3,, N (30)
I I20. .i20
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tions:

Vj' = Vi -  hZil (31)
I 1 N

N BZ,1 = VI, i =0, 1,, N (40)Z11, = Zi, I <N (32) 1=0

ZIN' dZj (33) =k E.F .

n, 7.aK 0(7,a) (41)

where I/i and Zil are given by (14) and (17). As N is increased,
the admittance converges much more rapidly with (30) than jkdI (iya)b6it + (7"a)FF" (

with (13). The impedance matrix Zit' is not symmetric. Al- Zit= - -' (2k ) 4(a

though most of the constants c 1 are Fourier coefficients, the

last one CN represents the amplitude of the edge mode. The
quantities di and f, are known constants. As usual, we assume the incident field (and the Fourier coeffi-

In the plane wave scattering problem, it is better to delete cients E,,) is known. The B1 are determined fromtn (40) by
the feed mode. In this case, Vi and Vi' are given by (20). matrix inversion or equivalent techniques. Ther; the A,, are

obtained from (37). Although the details cannot be presented
IV. PERIODIC COLLINEAR ARRAY OF SOLID DIPOLES here, one can then determine the current distribution and the

Let us consider a periodic collinear array of solid perfectly admittance of the solid cylindrical antenna. The aperture field
conducting cylindrical dipoles with flat ends, as shown in Fig. can be expressed as the sum of an edge mode plus a well-
2. The incident field (E', i) is considered to be periodic also behaved residue with techniques analogous to those presented
with period s, and the source is located in the exterior region for the tubular cylinder.
where p >a. The field may be expressed as follows:

V. NUMERICAL RESULTS

Ho = (Qk/rl) B-11 cos (lirz'/d), p <a (34) Let us discuss first the numerical results for the tubular an-
1=0 71'0(7ta) tenna. Fig. 3 illustrates the convergence curves for the admit-

tance of a tubular dipole. At denotes the size of the miatrix Zf
Ho AHK 1 (,,P) (i.e., the nuim'er of simultaneous linear equations) in theH¢ =Hq/-(jk/) cos (2nrz/s), p >a
.=o Ko(yna) moment-method calculations. A dramatic improvevicnt is tobe noted in Fig. 3 when the current distribution is represented

(35) as the sum of the edge mode, the feed mode. and a Fourier
series. Convergence is obtained with A = 6, whereas M must
exceed 40 when the current is represented by a Fourier seriesH t =(Jk/7) I Enl(TnP)Cs(2nnz/s)' p<a (36) alone.

Fig. 4 illustrates the admittance versus length for a tubular

where z' = z - h. It is easy to verify that (34) represents a monopole. Our calculations show excellent agreement with the
field with Ep vanishing over the flat ends of the cylinders at experimental measurements of Iolly 1101. In these calcula-
z' = 0 and z' = 2d. Equation (34) is valid only in region I tions accuracy was more important than computational econ-
where h < z < h + 2d. Of course, the field vanishes in the in- ony. Therefore, we used M = 10 for Fig. 4. In the infinite
terior of each solid cylinder.

The field E5(a+, z) must vanish on the surface of the con-
ducting cylinders, and it must match E,(a-, z) over the aper- ao
ture between cylinders. Thus I I I I I I l I

EDGE MODE * FEED MODE * FOURIER SERIES

A, = - BtFn - o(,,a)E. (37) .-

0* 7,S *1.4 -

dU
Ft. cos (liz'/d) cos (2nn-z/s) dz'. (38) 1.2

0 2FOURIER SERIES ALON4E
I'"

The field 11,(a+, z) must match the field I!,(a---, z) over o I

the aperture. This leads to
'06 006- WIRE LErNGTH 2~h . X -

An KI (7,,o)Fj,, .(a0 WIRE RADIUS o 0 007022 X
0 4 ~OUTR '~oUS OF FRILL "t•S

Yd EjF,! (7,d)F1 , 1104 - OUTER RADIUS OF FRILL b 3e5
n Kob'I,,a) o
! 02

dBI (39) 0
0 i ol 4 11 ,2 ,G 20 14 26 3p 36 40

MATRIX SIZE M

From (37) and (39) we obtain the simultaneous linear equa- I ig. 3. Ccnergeneevurvetor, septane:ot center.ted tubuiji dipole.
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Fig. 4. Admittance of tubular inonopole with open end.
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Fig. S. Convergence curve for admittance of solid center-fed cylin-
drical antenna with flat ends.
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Field of separable electric source current distribution In free space
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Simple rigorous expressions are developed for the fields of an electric source current distribution
that is separable in cartesian coordinates. The medium is unbounded free space, and the time-harmonic
source current exists in the slab region z, < z < zz.

A(x,y,z)= J(x', yz') - ' dy' dz'
Many textbooks present the theory of separable J , 4,rR

fields in a source-free homogeneous region. (6)
However, they do not relate these fields to the
sources or determine the fields in the source region. If X and Y satisfy (2) and (3), it is shown in Appendix
These relations and expressions are useful, for I that
example, in the study of propagation in periodic .
media, radiation from a periodic array of soarces, e Y -(X d
and scattering from a periodic array of metallic X(x') Y(y')- dx.dy'
or dielectric elements. -.

THEORY = (2-i /-t3) X(x) Y( y) e-',- (7)

Consider a time-harmonic electric current density -,i + -y2 + vy = -V -w:pe (8)
with the form From (6)-(7), the vector potential is

J = (iA +.;B+ 1C)X(x)Y(y)F(z) (1) A = (,A + ;B+ C)XYZ/(2y.) (9)

where A, B, and C are arbitrary constants, the Z(z) - F(z')e""dz' = P" + Qev' (10)
time dependence e-' is suppressed, F(z) is an .-
arbitrary function, and

X" = -Y2 X (2)
Y2(3) F(z')e " d: '  Z',< z< z

Primes denote derivatives, and y, and - 2 are arbi- ,

trary complex constants. Suitable functions are F(z')e '" dz' Z' < I

X(x) = cosh 'yx, sinh-y-x, e',',e-" (4) 0
Y(y) = cosh yzy, sinh'yy, e3', e- ' (5)

I F(z' )e '~d:' z, <2z<2z,or linear combinations of these functions. Q = J (12)
Let the source J exist only in the slab region 82
, < z < z. If the medium everywhere is free F(z')e- dz' z< z

space, the vector potential is given as follows: I.
Z" - -yZ- 2F (13)

C.yn& u1 by .A.,uaW 5 noeyal uW.. The magnetic field intensity is found as follows:

Paper number 1S0914. 1299

0048-6604/81/I 1124914501.00
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It - V x A (14) expresion for the current density J(x. y, :) and
H, - (CX Y'Z - BXYZ')/(2-y) (IS) apply the Fourier transform with respect to the

x and y variables. The resulting expression for J

H, = (AXYZ' - CX' YZ)/(2-i) (16) will be a summation of separable current functions.
Each term will have the form of (1) with a subscript

H, (EX' YZ- AXY'Z)/(2y 1 ) (17) n inserted on the quantities A, B, C, X, and Y.

The electric field intensity is given by Then the field of the periodic array is given by
(I5)-(21) with insertion of subscripts and summa-E = (7 x H - J)/(jto) (18) tions.

S= [(1c2 + v)A XYZ + BX' Y' Z + CX' YZ' ] D CONCLUSION

(19) Simple rigorous expressions are developed for

E, = [A X' Y'Z+ (k2 + 'y)BXYZ + CX Y'Z'j D the fields of an electric source current distribution
(20) that is separable in cartesian coordinates. The

medium is unbounded free space, and the time-har-
E, = [AX' YZ' + BXY'Z' monic source current exists in the slab region z,

+ (k2 + )CXYZ-2 CXYF] D (21) <2<22.

D =/( 2 j-E-Y3 ) (22) APPENDIX I:
EVALUATION OF THE DOUBLE INTEGRAL

In (21) the last term vanishes if z < z, or z > z2. The double integral in (7) can be evaluated most
With the aid of (1)3), (8). (9), and (13). it is readily with a technique presented by Harringwn

easy to show that our vector potential A satisfies [19611. In this method, one solves a radiation
the appropriate wave equation problem by two different methods and equates the

V 2A + k2 A = -J (23) two solutions. To apply this method, let us consider
an infinite sheet of electric surface-current density

Since our solution in (15)-(7) and (19)-(21) is J, = iX(x) Y(y) located on the plane surface z
derived via (14) and (18), it is not difficult to show z' and radiating in free space, where X and Y
that is satisfies all four of Maxwell's differential satisfy (2) and (3). From the boundary conditions
equations. In Appendix 2 it is shown that it also and symmetry considerations, H, = ±XY/2 when
satisfies the required boundary conditions at z = z - z'. It is easy to deduce that
2. The radiation conditions at z--+ ® will be satisfied
if we choose the proper root for j. I,= -(l/2)X(x)Y(y)sgn(z - z')e-"'' (24)

Theorems are available that make it possible to and therefore the vector potential is
use the above free-space fields even when the
medium is not free space. For example, suppose
one has a periodic array of perfectly conducting But the vector potential is also given by
wires surrounded by free space. It is well known
that the field will not be disturbed when the wires C e-"R
are removed if the surface-current density is main- A. X(x') Y('') -dx'dy' (26)
tained in free space. Next, suppose one has a 4 R

periodic array of dielectric rods surrounded by free
space. Without disturbing the field, one may remove By equating these two expressions for A,, we obtain
the rods while maintaining the polarization-current (7).
density J = jw(c, - e)E in free space. If the An alternative derivation of (7) is available if
permeability I., of the rods differs from g., then y, = jf, and -y2 = jg2 in (2) and (3), where f, and
the magnetic current density M = jo(IL, - )Il g2 are real constants. The following expansion
is required also.

Suppose one has a periodic array of wires or r "" (e"" 'e 'e 111,
I 1dfdg (27)rods in the region z, < z < z, and the surrounding R 2v-1,d

medium is free space. Then one may write a suitable
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- (28) p. = CXYF(z,)/(j) (35)

is developed by Tyras [19691. We substitute (27) The required boundary condition on the normal
into (6), interchange the order of the integrations, component of E is
and note that

p, = EE;(z2 ) - eE"(z2) (36)

e1t/ -|-" dx' = 2wrb(f+f,) (29) where z > z2 in region I andz, < Z< z2 in region
II. In (21) for E, all the terms arc continuous

S= g( except the last one. Since F(z) vanishes in region
4 1 + g2) (30) I, it is evident that our solution does satisfy (36).

i pFinally, let F(z) consist of a unit impulse functionThis procedure leads again to (7) and (8). F(z) = b(z - z"). From (10)-(12),

APPENDIX 2: Z(z) (37)
THE BOUNDARY CONDITIONS

In order to be correct, the solution presented Z'(z) = -1 sgn (z - z')e- "''-  (38)
in(I5)-(21)must satisfy certain boundary conditions Thus Z is continuous across the boundary at z =
at the surfaces z = z, and z = z2 . For the sake z". From (15)-(22),
of brevity, let us consider only the boundary at
z- z2 . From (15), (16), (19), and (20), the tangential H' -H. = BXY (39)
field components H., H,, E, and E, are continuous , -
across this boundary if Z and Z' are continuous. H, - = -AXY (40)
We recognize these as the appropriate boundary E - El' = -CX' Y/(jwe) (41)
conditions for a surface that does not contain a ,- =
sheet of surface current density. From (10)-(12), , -' - (Jwe) (42)

where z > z" in region I and z < z" in region
Z(z)'e F(z')es" dz' II. The electric surface current density at z = z"

is

+ et' F(z')e-'3" d:' (31) = ( A +jB)XY (43)
From the equivalence principle of Mayes [19581,

1" the electric current density J, can be replaced with-j3- F(z')e"3" dz' an equivalent magnetic surface current density given
by

+ y~" F(z')ef" dzp (32) M, - (-iCXY' + .9CX' Y)/(jwE) (44)

for z, < z < z2 , and It is easy to show that (39)-(42) satisfy the required
boundary conditions at the surface z = z", which

Z(z) - e", F(z')e"" dz' (33) contains electric and magnetic surface current
, densities.

SZ) F(z')e'l
" dz' (34) Acknowledgments. This work was supported in part by

contract DAAG29-79-C-0082 between The Department of the
for z > z2. If the function F(z) is well behaved Army. U.S. Amy Research Office. and The Ohio State Univer-

at z - z., a study of (31)-34) shows that Z and y Research Foundation.

Z' are continuous across the boundary at z - z,. REFERENCES
Thus the tangential field components satisfy the
required boundary conditions. From (17) it also Harrington, R. F. (1%1). Time.Harmonic E1ectromasntfic
follows that H, is continuous as required in the Felds, pp. 242-244. McGraw-Hill. New York.
given circumstances. Mayes, P. E. (1958). The equivalence of electric and magnetic

sources, IEEE Trans. Antennas Propes., AP-6. 295-296.On the surface z - z, the surface charge density Tyr". 0. (1969). Radiation and Propauain of Electromagneticis Waves. pp. 10S-106, Academic, New York.
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Many buried scattering objects of interest take the form of two-dimensional geometries. This in-
eludes scattering from utility lines, tunnels, and geological structures such as fault lines. Radar systems
used to detect these objects commonly use antennas that are at least comparable in size to the deph of
the target. Thus the target and the antenna do not satisfy far zone conditions, and the radar range
equation is not applicable. Consequently, the usual separate analyses of range, antenna, and target are
not possible. In a previous paper a method was outlined that permitted the antenna properties and the
scattering properties of a two-dimensional target to be treated separately for the case of a linear electric
or magnetic dipole source parallel to the axis of the two-dimensional scatterer. This involved com-
puting the received voltage for an antenna located at the image position, i.e., at twice the target range,
and computing the backscattered fields for an electric or magnetic line source at the position of the
transmitting antenna. This model has also been applied approximately to a video pulse radar with an
orthogonal dipole antenna system. It would also be applicable to large loop antennas quite commonly
used in geophysical explorations, as will be discussed. The primary goal of this paper is to discuss
additional scattering analyses that could be used to extend the previous results. The major thrust then
is to generate solutions for the scattering attenuation function (SAF), which has the form E'/EI or
H'/H' where the E' (or H') are the electric (or magnetic) fields of an electric (or magnetic) line source at
the image position and the E' (or HI) are the respective scattered fields. Eigenfunction solutions have
been used to obtain the SAF for circular cylindrical geometries to represent pipes and tunnels. Moment
method solutions have been applied to perfectly conducting wires with and without a dielectric sheath.
Moment method solutions have been applied to noncircular penetrable bodies using the polarization
currents to represent the unknowns. Such solutions were developed for a line source above dikes by

Parry and Ward (1971) and Hohman (1975) in the early seventies. Such solutions can be made for
frequencies that include several target resonances for potential target identification. These solutions can
possibly be extended to include fault lines, joints, etc., provided their electrical properties can be
estimated by using some of the concepts involved in the hybrid geometrical theory of diffraction-

moment approach. The methods of the modified geometrical optics could also be applied to obtain1scattered fields at higher frequencies. These and other potential approaches will be discussed.

INTRODUCTION Actually, Pirry and Ward [1971] partially remove
Scattering from buried objects differs from that in the half space tn part of their analyses of the scatter-

free space in several significant respects. First, there is ing from dikes. They included the half space in the
automatically a two-layer geometry since an earth- field incident on the dike but not in the fields scat-
free space interface is present with the probes being tered from the dike. Comparison with the solution
located at the interface or in free space. This can be when the half space is completely included gave vari-
accounted for when the radiators are infinite line ations of the order of 10%. This, of course, is trivial
sources or infinitesimal electric or magnetic (small in comparison to variations in geometry for 'real
loops) dipoles. However, the analysis becomes more world' situations.
complex for finite antenna geometries and generally Second, losses in the ambient medium occur as the
involves substantial computation time. In this paper wave propagates through the medium and over the
we consider only the scattering from lossy objects target.
immersed in lossy homogeneous media. Third, many targets which are to be detected using

a three-dimensional antenna system are in essence
Copyright 1982 by the American Geophysical Union. two-dimensional, e.g., utility lines, tunnels, faults, and

Paper number 2SO47. joints. Consequently, it becomes impractical to de-
00418-604/92/091004875011.00 scribe the target in terms of far field concepts such as
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4b) W (a), gets nearer the surface at higher frequencies. TheINFINITE INFINITE 01 POLE CROSSED
INE LItIE ANTENNA oI1o L medium in this case is a lossy dielectric in contrast to

SOURCE SOURCE
e .. - the conducting medium used throughout the geo-

d - - physical literature. Further, many of the targets of
interest are hollow cylinders, e.g., plastic pipes and± - tunnels. Thus one must be cautious in extending all
of these results to the low-frequency conducting

IMAGE ANTENNA media. Nevertheless, if one uses such parameters as
F. index of refraction and impedance, then this difficulty

NORMALIZATION V, V.. 1 V. E' should be averted. There is one other significant ad-
E' " W* Vi vantage to working with shallower targets; that is the
ET ability to be able to measure the scattered fields and

Fig. 1. Introducing the scattering attenuation function of a cylin- to compare them with computed values [Davis,
der into the radar model. 1979].

The goal of this paper is to review the results
achieved thus far for evaluating the SAF and to dis-

echo area (or radar cross section) or echo width. One cuss techniques for extending this effort. To this end,
definition that partially alleviates this difficult is that we first discuss the means that have been used of
of the scattering attenuation function (SAF) [Burrell evaluating scattered fields from penetrable two-
et al., 1979]. This parameter will be defined in the dimensional scatterers in a lossy medium. We shall
next section. It reduces the scattering problem to that then review briefly the pertinent solutions for the
of a line source in the vicinity of the two-dimensional lossy media and finally indicate how they might be
target. extended to the geometries of current interest.

Ward [1980] has summarized the significant devel- The next sections of this paper focus attention on
opments of electromagnetic scattering analysis as it the analyses we have used to evaluate SAF's for lossy
pertains to the lossy earth. In his notation, the ap- media. Later sections then introduce techniques that
proach used herein reduces the three-dimensional have been used for dilferent problems that could be
source two-dimensional inhomogeneity to a two- adapted to this purpose.
dimensional source two-dimensional inhomogeng-ity.

Stoyer and Greenfield [1976] have previously
considered the three-dimensional source two- THE S(A'I}RING ATTI'NtATION FUNCTION
dimensional target geometry in the presence of an The scattering attenuation function is defined as
interface. However, they used a point (infinitesimal)
source and Fourier transform techniques. The ap-
proach to be introduced here makes it possible to use where U' is the scattered field from the two-
a finite length source. dimensional target at the line source position, U is

Pridmore [1978] also worked the three- the radiated field of the line source at the image posi-
dimensional source three-dimensional target con- tion as defined in Figure I, and E and H represent
figuration. Richmond [1978] has treated this problem electric and magnetic field intensities respectively.
where the three-dimensional source was an infinitesi- The field parameter U can represent either the
mal magnetic dipole and the three-dimensional electric or the magnetic field intensity depending on
target was a conducting sphere as modeled by a wire whether the source is an electric or a magnetic line
grid. Actually, the wire configuration could be ar- source. It is also possible to use line dipole sources.
ranged to fit any conducting shape. It is observed Ilohman [1971] introduced a normalization that in-
that most analytic results obtained to date in the volved the magnetic fields in free space, i.e., Ampere's
geophysical literature arc for scatterers in the so- law. The normalization introduccd here tends to cast
called Rayleigh region, i.e., below resonance, whereas the electrical parameters in a more usable form as we
the results discussed herein include the resonance shall soon see.
region. The basic model shown in Figure I introduces a

Most of the work at the ElcctroScicnce Labora- thrce-dimcnsional antenna at the image position. If
tory has been directed toward physically small tar- the source antenna is also the receiving antenna, then

30

-I.



II

CYLINDRICAL INHOMOGENEITIES 975

the normalized received voltage is approximately then be proportional to the Fresnel reflection coef-

V- (V I~Vr)SAF (2) ficient.
Guideline I. The level of the SAF in the target

The ray spreading in the plane of the paper of Figure resonance region is changed, as the electrical pa-
t is contained in the factor V . This also contains a rameters of the ambient medium are changed, by the
spreading factor in the perpendicular plane which is change in the Fresnel reflection coefficient.
canceled by the ray spreading contained in the factor Guideline 2. The changes in the electrical proper-E' and is then replaced by the spreading factor in- ties of the ambient medium alter the loss contained

herent in Es . If orthogonal transmit-receive dipole in the SAF by an amount proportional to twice the
antennas are used rotated by 450, then distance from the leading portion of the (penetrable)

target to the reference plane. This is because the ref-
x = (Vi/Vr)SAF (3) erence field U is modified by this change.

Strictly, (3) is valid only when the scattered field has Guideline 3. As the depth d is changed, the SAF is
a preferred polarization independent of the polariza- changed according to the approximate relation
tion of the incident field. This can be modified to ( R '\'2
account for the case where the scattered fields are UHR. d) -
simply different for different incident polarizations R + d)
[Burrell et al., 1979]. This model has been confirmed where R is the radius of curvature at the first station-
by. comparison with a moment method solution ary point on the target, This is based on geometrical
using a 1000-m-long conducting cylinder as a target. optics and assumes either that this specular scatterer
The results for a video pulse radar agree within 0.6 is dominant, which is usually the case for a lossy
dB where the received peak signals were 143 dB medium, or that R << d.
below the transmitted signal and the waveforms are These guidelines have been used for circular tun-
identical. The reader is referred to Burrell et al. nels [Burrell et al., 1979] and have worked very well
[ 19 7 9]. for the relations of the SAF as a function of media

The ratio V IVr can now be computed separately, and depth. Thus the SAF parameter is somewhat
and there is no need to restrict the actual antenna to more general than it would originally have appeared
either an infinitesimal dipole or a line source, and in practice is a more useful concept than the

It is apparent that the SAF's are a function of conventional echo width.
depth d and the electrical parameters of the medium. Finally, one observes that the interface could have
However, these effects can be easily estimated with been incorporated in the model of Figure 1. There
reasonable accuracy without repeating the entire would be no substantial difficulty in analyzing the
analysis. Thus the SAF of a specific scatterer can be geometries of Figures la and lb. Ilowever, if the an-
estimated reasonably accurately (within several tennas of Figure Ic are of finite extent, then verydecibels) as the range and electrical properties of the large computer running times are encountered [Bur-media vary. rell and Peters, 1979]. More recently, using tech-

The scattering attenuation function should not be niqucs developed for striplinc antennas, this difficulty
seriously changed if a ground-air interface is included has been largely eliminated [U:unoylu et al., 1979],
in the model, since it would influence the scattered but this has not been incorporated in these results.
field and the image field in the same manner. Two
conditions must be met in order for the above as-
sumption to be valid. First, there is no significant MODAL SOLUTIONS

multiple targct-intcrfacc interaction, and second, the The sphere and the infinite cylinder represent
lateral extent of the cylinder target is sufficiently classic shapes in the study of electromagnetic scatter-
small so that lateral waves on the surface are not ing. Prior to the advent of large digital computers it
significant. This could be relaxed to the extent that was most difficult to evaluate numerically the scat-
the extreme rays arc not incident at the surface tered fields of such lossy targets even when the ambi-
beyond the critical angle. ent medium was free space. It is not surprising that,

The guidelines to follow have been developed for as Parry and Ward [1971] observe, D'Yakonov
the case where the pertinent scattering mechanisms [1959a. b] 'has published a solution to scattering
involve internal reflections. The scattered fields will from a circular cylinder and a sphere in a conducting
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t ultimately eliminate this difficulty. Howard [1975],
for example, uses fast Fourier transform (FFT) rou-

t .tines to obtain the scattered fields of a small radius
conducting cylinder immersed in a lossy half space.

r .,There is at least one other modal solution that
Q , > " Ishould be included in this discussion.

QWait's (1959] treatment of the scattered fields
from an imperfectly conducing dike should also be
included as a modal-based solution. His approach is
a rather elegant preface to concepts now being intro-

to to t 0? o'"o'0 duced in the geometrical theory of diffraction (GTD)
FREQUENCY tHE for the treatment of thin dielectric slabs and absorb-

Fig. 2. Comparison of scattering attenuation function E for ers placed on conducting surfaces. We will later

an electric line source for I-m-radius tunnel for different depths d update this technique, show some newer, remarkably
and conductivity a shows that the primary effect of these pa- accurate results, and propose some possible extel-
rameters is to change the amplitude of the curve. sions to this approach. The modal solution is appli-

cable primarily to cylindrical shapes. With current
half-space, and we have yet to witness numerical re- computer technology there is no serious limitation
suits for either of these particular solutions.' O.unade on the size of the cylinder that can be treated. In this
[1981] has attempted to extend D'Yakonov's solu- solution the incident wave is expanded in a set of
tion to evaluate the fields at the surface of the earth cylindrical modes, and boundary conditions are ap-
using the circular cylinder as a target. However, in plied to each mode individually to evaluate the coef-
his assumed form of the scattered fields he has intro- ficients of the scattered cylindrical modes. Summing
duced a symmetry in the angle 0 about 0o that is not the fields of each mode then gives the desired scat-
actually present (see his equation (21) and his Figure tered fields.
2). Even if this were corrected by introducing the Our recent computations have involved a number
terms sin n(46 - 00), the result would still not be cor- of solutions for the SAF of circular cylinders. Some
rect except for the observation point directly above examples are shown in Figures 2-4. Figure 2 gives
the buried cylinder. Also, as we have already ob- the SAF for I-m-radius tunnels of different depths
served, it is not always essential when considering the and ambient media. It is left as an exercise to check
scattering problem to include the half space problem. the guidelines for depth and the media electrical pa-
Indeed, much valuable insight can be achieved in an rameter dependence given earlier. Figure 3 gives
economic manner if it is not included. Modal solu- SAF's for lossy cylinders immersed in a lossy
tions for scattering from lossy circular cylinders in medium. These might represent tunnels filled with
lossy half space excited by a line source are relatively water or debris. Figures 4 and 5 give the SAPs for
straightforward to evaluate numerically using
modern digital machines. However, the numerical
computations become more complex when a finite

-O d -. m MEDIUM 4antenna system (neither infinite nor infinitesimal) is 7Oo9 N r •tm af ,O001mhos/m

introduced at the surface [Burrell and Piers, 1979]. t 0  ,. r,, cYL ,,.,
There have been many analyses involving infinitesi-
mal dipole sources located at the surface of a half o ao

space. Many of these include reflections from multi- '?
pie layers in the lossy half space [Wait, 1958]. There ,
have been few numerical solutions involving finite-
sized antennas, particularly for the current distri- 2 0ao , f
bution and the impedance, such as a resonant dipole CYLINDER CONt,,CTIVIY
at thc surface of the Iossy half space, primarily be- ED .... .... I ""'

cause of computation costs. This has been approxi- FREQUENCY (Hu)

mated by Dris (1979]. There is. however, a conti- Fi .1. Scattering attenuation- funoion for lossy dielectric cyl.
nued effort to generate new techniques which will inders in a losay medium for parilll electric polariation.
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I. RADIUS CYLINDER;.,.I,...O -0 "

LINE .I RADIUSMEDIUM ,9
SOURCE WIR .0 . FROM r I aO000( imo./

iI. -- € -eD

It! .3f OT O7
20.

tiq- TUNNEL WITHOUT WIRE 1,FREGUENCY I N.

Q_ Fig. 6. Scattering attenuation function for perfectly conducting
' If W.." ... e . . cylinder and perpendicular polarization in relatively loss free

FREOUENCT INS) Iground.

Fig. 4. Scattering attenuation function for air-filled cylinder
with a perfectly conducting wire at the tunnel floor. ducting cylinder immersed in a nearly lossless

medium. The ripple in this case is caused by the
air-filled cylinders with a wire. The wires might rep- creeping wave which is almost negligible even for this
resent a rail or a power line in the tunnel. Let E, very lossless medium.
denote the field of the line source near the dielectric
cylinder without .wire. Now let E2 denote the field of ALTERNATE TECHNIQUES AVAILABLE FORa I-A line source located within the dielectric cylin- SCATTERING FROM PENETRABLEa 1-ACYLINDERS
der at the position where we will later place the wire.
The solution for Ez makes use of the addition theor- There are perhaps three additional techniques
em [Harrington, 1961]. By superposition, the field of available to evaluate scattered fields from penetrable
the exterior line source, radiating in the presence of cylinders. These include (I) moment method or inte-
the dielectric cylinder with interior wire, is given by gral equation solutions, (2) optical solutions, and (3)
E = E, + IE2 . The current I induced on the thin hybrid solutions. Each solution has its applications
wire is determined by forcing E to vanish on the and its limitations, but they have not been developed
surface of the wire. The current is assumed to be at this time to their ultimate capacity for targets im-
distributed uniformly around the circumference of mersed in a lossy medium.
the wire. Finally, Figure 6 shows the SAF for a con-

INTEGRAL EQUATION SOLUTIONS
Im RADIUS CYLINDER;

LINE ( .,There are two basic approaches using integral
SOURCE equations for the scattered fields of penetrable ob-

jects. One of these uses surface equivalence currents
(J = i x H and M = E x Pi) [Harrington, 1961] andIDIM ooRADIUS MEDIUM: requires the solution of coupled integral equations,WIRE 0.0.2M FROM o-O.O01MhOS/m

TOP OF CYLINDER one for the ambient medium and the other for the
penetrable object [Andreason, 1965]. Matching the
fields at the surface allows the unknown coefficients

7to be evaluated. This is quite similar to the Sommer-1. , feld analysis of the half space. The other approach
uses the so-called v, nie polarization currents to be

("Q _discussed later [Rhodes, 1953. Richmond, 1965,

lu FREQUENCY tNS) 1966]. One of the major distinctions is that in the
first case the boundary conditions are satislied at the

Fig. 5. Scattering attenuation function for air-filled cylinder surface and in the second case thcy are satisfied
" with a pefectly conducting wire at the roof of the tunnel, throughout the volume. The choice of solution would
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978 PETERS AND RICHMOND

be associated largely with the electrical parameters, Now consider the electric line source radiating in the
size. and shape of the penetrable body, and the de- presence of a nearby parallel dielectric cylinder. The
6i~ss w,uld ,V' b,,cd on III, :,nlk'$ mntrix to he field in this case is denoted by E. where
inverted.

For example, if a thin layer is to be treated, then
the polarization current approach would be most ap- Since the field is :-polarized, scalar notation is suit-
propriate. Alternately, if a large perturbation at an able. The field V scattered by the dielectric cylinder
interface is to be analyzed, then the surface current may be generated by an equivalent polarization cur-
would be more appropriate. Smaller objects or ob- rent density given by
jects with a small dimension in terms of wavelength
would require a smaller matrix if the volume polari- JU(= -i;)E (7)
zation current approach is used. Since most moment radiating in the homogeneous ambient medium (li:).
method solutions are considered low-frequency tech- The dielectric cylinder has parameters li and c, and
niques, then it seems appropriate to place emphasis it may be inhomogeneous, but wc assume /I, = p.
on the polarization current density approach. An ex- The current Jq exists only in the dielectric region
ception to this might be a gentle perturbation or with permittivity :. Since the field E is unknown, the
swell' on an interface. current, J, is also unknown.

There is also an integral equation solution that has The scattered lield is given by
been designated as the T matrix used originally by ?I'
Waterman [1965] for the analysis of electromagnetic V'(x, I) = - iIJ,x'. y')K,( p) dx' dy' (8)
scatterers. These solutions incorporated an extended 2j

boundary condition so that external to this bound- where the integration extends over the cross-
ary, outgoing cylindrical (or spherical) waves could sectional area of the cylinder and
be used. Mei et al. [1979] used a similar solution
except that they introduced a fini!." Jiffcrencc solu- P = ix -- XTy-y ] 2 (9)
tion to find the trial functions internal to the ex- From (6) (8) we can derive the following integral
tended boundary. Again, these types of solutions equation:
would minimize the number of match points where
the scatterer better fits the circular or spherical ex- , + y "' [f J(X ',)K 0(yp) dx' dY' = E(x, y) (10)
tended boundary. joJI -e) 2nJJ

Next we will outline the solution for a lossy dielec- where J = J . Now let us expand J in a series of
tric of rather general cross section using the polariza- basis functions as follows:
tion current density approach.

d(. 3y) C (. F".,,y)(i

MOMENT METHOD FOR ELECTRIC LINE SOURCE From (10) and (11),
NEAR A LOSSY DIELECTRIC CYLINDER
USING THE POLARIZATION CURRENT Fd I~x, A' .t' I

APPROACH ,_ [ - r) jx , ,'dy

Consider an infinite electric line source with a uni- = E'(x, y) (12)
form time harmonic current 1o . When radiating in a To determine the constants C,, let us multiply (12)
homogeneous medium with complex parameters ip by a weighting function (;,(x. 0i and integrate over
and c, this source generates the following incident the cross-sectional area of the cylinder. In this
field: manner we obtain the following system of simulta-

El=-1 Ko'p!2 (41 neous linecar equalions:

where 7 and 7. denote the intrinsic impedance and .-.

propagation constants of the ambient medium and (',7.. pi ii I, 2, N (13)
Ko denotes the modified Bessel function. The line
source is located at (x,, y.) and is parallel with the (.(,, = .... * -l ;
axis. The observer is located at (x, ). and - :) 21 ,: i

p, [(x-x,) + (y.y,)Z]t.1 (5) •(. %')Ko;'pd." d (14)
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From (23) and (24) we obtain the following integral
V. J G.(x, y)Ex, y) ds (15) equation:

Numerical integration techniques are generally re- H(x, y) H(x, y) + 1 f--- --- 1y'
quired to evaluate the integrals in (14) and (15). 2n es eyL
Matrix inversion yields the solution to (13), and then OH] K1Oyp) (25

the scattered field is calculated via (8) and (11). + (x,-x') P-J p dy d5
Now let us expand the unknown function H in hMOMENT METHOD FOR MAGNETIC LINE SOURCE

NEAR A LOSSY DIELECTRIC CYLINDER series as follows:

Consider an infinite magnetic line source with uni- H(x, y) = H,(x, y) = .C. F.(x, y) (26)

form time harmonic current distribution 1o.When where the functions F, are called the basis functions.
radiating in a homogeneous medium with parameters From (25) and (26),
u and c, this source generates the following incident
field: T.C. F.(x, y) H'(x, y) + - JJC f

Hi = 2 K°(yp,) (16) OF. OF,] Kt(yp)
2•q (y -/) + (X - X') -, -7- dx' dy' (27)

I OH. yo(y-y)K (yp a,) ( 7 T
E' - = (17) To determine the consiants C, we multiply (27) by a

weighting function G.(x, y) and integrate over the

E' OH, 10(x-x.)K(yp,) cross-sectional area of the dielectric cylinder. This
7 Ox 2np, yields the following system of simultaneous linear

The field scattered by the parallel dielectric cylinder equations:

(or radiated by the polarization current J in a homo- C.Z,,, = V, m = 1, 2, N (28)
geneous ambient medium) is given by -

Z, = G.(x, y)F.(x, y) ds- G.(x, y)WAX. A) = 2n ff0,y- )J.(x', y) (f 2 -f f E (, y

$~F + (F x OF,'K,(yp)dds (9

(x -x)Jx%,)] ) d' dy' [1(Y9)o - y') x) o (- x) ds'ds (29)

where V. -ff G(x. jyH'(x, y) ds (30)

J = ja., OF.) (20)
Equation (28) is solved by matrix inversion or equiv-

From (20) and Maxwell's equations, alent techniques, and then the scattered field is calcu-

( , - ) OH, lated via (23) and (26).
J. -tu(e t)E. = H.y (2 1) Figure 7 shows the scattering attenuation functionas defined in (I) for a square cylinder as obtained

(, -1) Oil, with the general approach just outlined. Hohman

r. I (22) also made some scattered field computations from a
square conducting medium, but these did not extend19H22), into the resonance region.

H. Use of the SAF of Figure ! in the model of FigureHI(X, y) ff !! 1(, L y' I has yielded reasonable agreement with measured

results as obtained using a video pulse radar [Davis,
+ (x-x) | - dx'd' (23) 1979].

INSULATED FINITE LENGTH WIRES
The incident, scattered, and total fields are related as IN A CONDUCTING MEDIUM
follows: Conducting finite length wires immersed in a con-

H- H' + H' (24) ducting medium can be readily analyzed using con-
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trum. The steps in the analysis include taking the

o-\/7 \ FFT of the transmitting pulse, evaluating the compo-
, - \ nent terms illustrated in Figure 1, and taking the

. / t ', forms now shown in Figure 10. The spectrum of sev--'' "/ / nereFT oobanth eeie vlae ae

... , ,-, eral of these waveforms is shown in Figure !1, where
'tunnel length' represents the length of the insulated

2j %.0. 01, .oomhos A buried wire.
Sd - 12m

Q EE -E,1  W 2m'
2M HYBRID SOLUTIONS

Pill Hybrid solutions have been used to analyze

240.0various geometries that may not be treated by the
.0 60.0 2o.o '0.0 o 240.0 30oJD usual moment method solutions. They have been

FREQUENCY INMaI
used to treat the infinite conducting wedge [Burnside

Fig. 7. Composite scattering function of 2-m-square air-filled et al., 1975] and an initial solution for an infinite
tunnel obtained by a polarization current moment method solu- dielectric wedge. They have not yet been used for the
tion. E, - Ej represents the SAF for a crossed dipole antenna (,cc treatment of objects immersed in a lossy medium.
equation (3)). The hybrid solution is a combination of a moment

method solution with another solution where the un-
ventional moment method techniques. One such known fields outside a restricted region can be rep-
result has already been noted. We have also con- resented by a field of known functional form multi-
sidered infinite wires immersed in a circular tunnel plied by an unknown constant. One of the original
using modal techniques. The solution to be discussed solutions took the form illustrated in Figure 12. The
here is that of an insulated finite length wire. A currents on the surface of the conducting wedge out-
coaxial-like mode is assumed where the volume po- side the encircled region can be written in the form
larization currents are placed in the dielectric shell Cejkp
and surface currents are on the surface of the wire. J - + j, + (i x :) p (32)
The electric field in the dielectric shell is assumed to
be radial yielding polarization currents where J' = ti x HI and ' = fi x H'. H' and H' are

the incident and reflected magnetic field intensities
J, (C2 - 0(10 (31) respectively; the only unknown is the constant C.

where 1(1) is the current on the wire. Designating this Is eI'll

current in the dielectric shell as a tubular expansion 16'
dipole, one needs to include the mutual impedance CALCULATED
between the nth tubular expansion dipolc and the .. O osu-
mth filamentary dipole (in the lossy medium) in the
mutual impedance Z,,. The moment method solu- 12

tion then proceeds in a normal fashion. The reader is SIC
referred to Richmond and Newman [1976] for further D OLECT CATE

details. This approach has been tested by evaluating
the impedance of insulated wire antennas. A typical 6 2b:O 146
example is shown in Figurcs 8 and 9. This same ap-

proach has been used to find the scattcred fields from

an insulated conducting wire in a homogeneous 2
medium. In this case, we present the scattering at-
tenuation function results, as incorporated in the re- 0 01 02 03 04 os 06 07 06
ceived voltage at the terminals of the receiving an- DIPOLE LENGTH IL

tenna shown in Figure I. The source in this case is a Fig. 8. The conductance of an insulated dipole plotted versus its

Gaussian pulse which contains a rather wide spec. length in wavelengths.
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The surface currents inside the encircled region are 0 MEDIUM r.,oo00./.., 4

unknown and are evaluated along with the constant SHAPE OFO.: /

C using conventional moment method techniques. RECEVE - ECEIVI

Harrington [1968] gives as an integral equation for 9_ -,/L " SGNL
the total current density J: ,- E

| .1 INPUT PULSE "

r r]a~ ECEIVED V SEIVELJ. + L V x f JH1o1(k p - P'I) dr (33) W SGNAL SIC

where L is taken about the perimeter of the conduc- SHAPE OF Z." j
ting surface. Inside the encircled region the currents C EE

RECEIVED REE IGNAED
can be represented using subsectional bases. Outside _ _SIGNAL - 0 0406SIGNAL

the encircled region they are represented by the GTD - hIcRosEcoos MICROSECOoS

currents given by (32). For the lossless media, thiswill involve integrations along the surface of the form Fig. 0. Signals received on a 50-rn orthogonal dipole antenna
system 50 m from 300 m long, 0.1-m-radius tunnel containing a

e-jk e1 " 0.01-m-radius wire on its axis. (a and b) The early time behavior

11(111k I p - p'l ) dp' (34) and the complete received signal respectively for a 0.5-1s Gaussian
4 ;7U input pulse. (c-d and e-f) The signals for I-As and 

2
-ps input

pulses respectively.

where p' is taken along the surface of the wedge.
As Burnside et al. [1975] observe, this integration

need not be carried to o because of the decaying grazing incidence and also polarization parallel tonature of the Hankel function. the surface.
Next, one can consider the case of the conducting Wu and Tsai [1977] have adapted this approach

for the case of a dielectric wedge. They have usedwedge in a lossy medium as a first step in considering
lossy wedges immersed in a lossy medium as the ex- JOTD = J, + J, (35)
ternal medium becomes lossy (jk-. -a -jk); this in-
tegral becomes negligible for much smaller values of They have included only first-order geometrical
p, and thus the solution is simplified. If the loss is optics fields for the region far away from the tip of
more than marginal, then indeed one could find the the wedge, primarily because there is not yet a solu-
fields diffracted by the edge of the wedge without tion for the diffracted fields of a dielectric wedge.
using the hybrid approach, unless one is particularly At first glance, it would appear that the coupled

interested in the fields along the surface of the wedge. integral equation approach would be more suitable
Aas [1975] has used additional terms in JGTD of thc for the hybrid approach since it would be more suit-

form C2 e - J' and C3 e"-"/p to include the cases of able for defining a wave on the surface of the wedge
comparable to the hybrid analysis of the conducting
wedge. They observe that the solution could be im-to;-,I I -,[ --i-' proved by including multiple reflections internal to
the wedge. They also note that it would be improved

* when the tip diffraction term, once its form is known,
is included.

-

2 OPTICAL SOLUTIONS

12The optical solutions generally analyze scattering
2 .using ray techniques such as conservation of energy

* "in a ray tube, plane wave refraction and reflection
coefficients, caustics, etc.

oDPOLE LNGTH L/0 MODIFIED GEOMETRICAL OPTICS METHOD

Fig 9. The susceplance of the insulated dipole, shown in Figure For example, some of the earliest solutions of this
5, plotted versus its length in wavelengths. type focused attention on the scattered fields of di-
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NOMAt Ir! TO 2 9*0r*,r, NOVMALIZED TO 3 3 0'_vv

3El,

o 0
000 2.5 5.0 0.0 2.5 5.0

MHZ MNt
(e) TUNNEL LENGTH .30m (b) TUNNEL LENGTH150m

QNORMALIZED TO 5. " V I Q v NORMALIZED TO28Z0'v/v 00

Fig. 13. On the general ray path.:l/l

electrical path lengths, the caustics, and multiple in-
y . a ternally reflected rays. Figure 16 shows the compari-

0.0 2.5 5.0 0.0 2.5 5.0 son of the approximate echo width of several cylin-
MHz MHz

tW) TUNNEL LENGTH-75n (d) TUNNEL LENGTH*37.Sm ders whose relative permittivities are 0.50 and 0.75
with those obtained from the exact solution. These

Fig. 11. Magnitude of transmission transfer function for 50-m- examples were chosen since they might be more rep-
long. 0.002-m-radius uninsulated dipole antenna system 50 tn resentative of a sewer pipe or a plastic gas pipe,
from a finite length tunnel for various tunnel lengths. The tunnel
has a radius of 0.1 in and contains a 0.01-m-radius wire at its tunnel, etc., than other values that have also been
center, obtained. The analysis becomes more complex as

r, - tj/co shown in Figure 13 becomes large with
respect to 1. landa and Plonus [1969] have criticized

electric spheres and cylinders [Kouyoumjian et al., this approach and claimed that surface waves are
1963; Peters et al., 1965]. Analyses of this type were needed to complete the picture. There is one other
designated as the modified geometrical optics mechanism that is possible, a lateral (or up, over, and
method. Some of the ray mechanisms that were con- down) wave. This would be applicable when the
sidered are illustrated in Figure 13. Ray I in Figure index of refraction for the cylinder is greater than
13 is an externally reflected ray, ray 2 is the axial that of the ambient medium. At any rate for c, =
internally reflected ray, and ray 3 represents two 2.56, Barrick [1968] included the following rays: (1)
nonaxial rays. One of these is shown in Figure 14 externally reflected ray, (2) single-bounce axial ray,
and is known as the glory ray. It has an apparent (3) triple-bounce axial ray, (4) single-bounce glory
focus or caustic located a distance p, from the sur- ray, and (5) single-bounce stationary ray. He' ob-
face as shown. Figure 15 shows the geometry of the tained reasonably good agreement between the mod-
stationary or rainbow ray. The analysis included the ified geometrical optics solution and the exact solu-

tion except for raggedness in the frequency depen-
dent curves of the exact solution. He reported that

INCIOENT
,- , WAVE

! . X X X\ WAVE FRONT I

7, X , -- MATCH

CURRET 
CAUSTIC

04 - lki'CUSI
a ~A

INCIOENT RAS

Feg. 12. 'eometry for hybrid solution for the conducting wedge. ig. 14. Wave front of single-Niunce glory ray.
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Q' STATIONARY RAY

r EQUIPHASE
GLOR RAYSURFACE

Co COORDINATE
M. SYSTEM

---- (Syl
X L1  

r0

X 0 : 1 0

Fig. 15a. Equiphase surfaces associated with single-bounce Fig. 15b. Enlarged figure about point N for the equiphase sur-
stationary ray. face of single-bounce stationary ray.

the addition of small losses eliminated this ragged given in Figure 17. The incident fields are shielded at
characteristic. Including other rays of the type listed 4, - 0,' = n, which is called the shadow boundary.
did not introduce such a behavior, and he attributed The image (or reflected fields from the half plane)
it to a much higher order periodic type of trapped fields do not exist for 4, + 4,' = nr. Thus a reflection

mode. This is probably the lateral wave mechanism. boundary exists at 4, + 4,' = n. The diffraction coef-
This type of solution has been applied to a variety ficients D(s, s', 4, - 4,') and D(s, s, 4, + 4') are inti-

of dielectric materials where the targets are generally mately associated with the incident and reflection
circular cylinders and spheres. There is, however, shadow boundaries respectively. The diffracted fields
nothing that restricts it to these geometries. It could given by D(s, s', 0 + 0') are proportional to the dis-
be applied for almost any shape exclusive of caustic continuity of the fields at the shadow boundary (SB),
regions where special techniques are needed to evalu- and the diffracted fields given by D(s, s', 0 + 0') are
ate the fields. While all analyses thus far have con- proportional to the discontinuity at the reflection
sidered only lossless targets in a lossless medium boundary (RB).
losses can be accounted for in terms o(f an attenu-
ation along the pertinent ray paths, etc. These ray ....° Ap

e 
ROXIMATE

paths may lie in the ambient medium and on or - EXACT I PARALLEL AM PERPENDICULAR

inside the scatterer. The introduction of loss may also 0--
generate additional ray paths. Of course, reflection - P RPENDI)LAR
coefficients, etc., will be modified. It should be noted
that such solutions would generally be simpler since -20
multiple internal reflections in a lossy cylinder would -so
be attenuated and would reduce the number of inter- -,0.50 o RALLEL I
nal rays that need be included in the solution.

2l

GEOMETRICAL THEORY OF DIFFRACTION 0
SOLUTION 'In 1 0

A more recent optical solution makes use of some
of the concepts of edge diffraction [Burnside and -3D -

Pathak, 198 1]. Consider the diffracted fields from the
edge of a conducting half plane given by MI0 PRALLEL

0 0.2 0.4 6 0. LO i.2 1.4 I I.i

\d/ \ F'/
Fig. 16. Comparison of exact and approximate backscatter

where E' and HI are the fields of the incident wave, D echo width of an inlinite circuIar dielectric cylinder (or retlative
is the diffraction coefficient, and the geometry is permittvity r., - 0.30,0.73.
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S*, , $/ d" SOUJRC [

* -DIFFRACTED 

ASUC

RAY
. . ..

HALF PLANE

.0 _

ll INCIDENT RAY L//I///1I 4

-s % Fig. 19. Geometry used for GTD moment method (MM I com-
- parison.

HALF PLANE - where (I - ) = R represents the discontinuity of

fields at the shadow and reflection boundaries respec-
Fig. 17. Edge-diffracted ray geometry. RB is reflection boundary; tively. This type of solution has been applied to the

SO is shadow boundary. case of a thin dielectric slab. Burnside and Pathak

[1981] have calculated the far field radiated fields for
Suppose now we permit the half plane to be thin a number of two-dimensional geometries. An exam-

and penetrable. Then there is a partial reflection and pie of this geometry is given in Figure 19. A typical
a partial transmission at the half plane as represented result is shown in Figure 20 where this GTD solution
by Figure 18. Now (36) takes the form is compared with the moment method solution.

J  IWe observe that the results obtained herein do
or or [- -T)Ds, s' 0- 0') confirm the accuracy of the method. The fact that

E i there is agreement over the entire pattern also re-
moves the potential restriction discussed by Waie

+ RD(s, s', ¢k + r)] (37) [1959] concerning the location of the source and ob-

servation point. This is accomplished by the appro-
priate modification of the diffracted fields associated
with both the shadow and the reflection boundaries.

A significant factor here is that the scattered fields
CONDUCTIS can indeed be represented by a discrete shadow

\F PLANE boundary and by the same form of diffracted fields as

0 for the conducting shape. If the same basic postulate
is made for penetrable wedge geometries with differ-

THIN ... "N"I ,,

DIELECTRIC *P'-E "M
HALF PLANE ", ".

* so

Tt~l0 
20;7 0 0¢R

"ALF PLA.i Fig!. 20, GTD-MM t'lmpan with lelric lineour uing
leometry shown in Figure 19 %ith I. - 2o;.. n O.OS. p,Fi&.l Optil boundariesl for dielectric half plane. (Left) 0I, -20 and Irighil 0t, 44) .
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9" PETERS AND RICHMOND

etric optics viewpoint, there is a void between these
two boundaries. This is clearly a more complex case.

DIFFRACTED It becomes even more complex if the line source isX RAYS not in the far field since the fields of rays associated
.. . .0. with (SB)2 are not homogeneous because they are

dependent on various incidence angles at the surface.
TRAPNO One could make various postulates as to the form of

~Vt 'w ~ these diffracted fields. However, at this time, not
DIFFRACTED enough has been achieved to be realistic. Perhaps the
REFLECTED

/' RAYS proper approach, barring the development of an ade-
- .quate modal solution, would be to extend the hybrid

,
"  // ,solution and seek GTD-like representations with the

/ / appropriate uniform behavior to represent them as
/ / 1 / rays.

IFigure 24 illustrates an example where reasonable
results might be obtained for the space designated as
, using the approach given by Burnside. The overly

IMAIE stringent requirement that , < 1 2 implies that thereor
CORNER are no multiply reflected rays. The diffracted fields

from any internal shadow boundaries would tend to
Fig. 25. Suggested ray configuration for a simplistic fault geom- remain inside the wedge. The external diffracted

etry where current GTD solution is appropriate, fields would be those of the conducting wedge multi-

plied by the appropriate reflection coefficients. These
Looking further at the geometry of the vertical solutions, once developed, should prove useful for

interface of Figure 21 as illustrated in Figure 22, we providing building blocks to more complex geom-
observe that the phase velocity of the wave at the etrics. For example, Figure 25 sketches some of the
surface on the low index of refraction side has the additional mechanisms that might appear in a 'fault-
appearance of a fast wave. Its phase velocity must like' geometry. The rays diffracted by the upper
have a component, not only along the vertical inter- corner appear after reflection from the lower inter-
face but also perpendicular to it. It would conse- face to be emanating from the image shown. Of
quently appear as a shadow boundary as shown in course, improved values are needed for the fields dif-
Figure 23. fracted by the upper corner. Evaluating the reflection

The launching properties of such a field should be of the trapped wave also would require 'additional
studied carefully using the hybrid solutions already study.' These would probably give fields of lower
discussed. Once these are adequately understood, value because of loss.
they would be used as a tool for studying more com-
plex geometries.

Note also that the various boundaries are associ- CONCLUSIONS
ated with different wedge surfaces. For example,
(SB)2 is clearly associated with the vertical suface of The scattering attenuation function has been de-
Figure 21. Thus once the equivalence currents are fined for the scattering from two-dimensional targets
evaluated for the wedge, one could assume that the using finite size antennas. Some results have been
equivalence currents on the vertical surface would presented for the SAF of targets in a lossy medium.
contribute to the fields (SB)2 and its associated dif- Possible extensions of existing methods for this pur-
(racted fields. One could further refine this model by pose have also been discussed.
neglecting the optical fields on the vertical edge and
repeating the hybrid solution. In this manner, one Acknowhdqie;rs. The authors are indebted to W. D Burn-
could hope to construct a solution for a dielectric side for helpful suggestions and permission to use some of his
wedge in a GTD format. rec.-nt results. This work was supported in part by the Depart-

ment or hletrical lngineering. FlectroScien.ce Laboratory. OhioIn Figure 21 we recall that there now are two State Lniversity. Columbus. Ohio. and in part by the Army Re-
shadow boundaries at different angles. From a geom- ,earch Otflce. contract DAAG29.79-C.4)l2.
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PROPAGATION OF SURFACE WAVES ON A BURIED

COAXIAL CABLE WITH PERIODIC SLOTS*

J.H. Richmond

The Ohio State University ElectroScience Laboratory
Department of Electrical Engineering

Columbus, Ohio 43212

ABSTRACT

Consider a horizontal coaxial cable with periodic slots in the

outer conductor. This "leaky cable" is buried in the earth as one

component of an intruder detection system. We develop the theory for

surface-wave propagation on the cable in the presence of the planar

air-earth interface. Numerical results are included for the phase

velocity and attenuation constant as functions of the various

parameters. Data are presented for the electric field strength at the

air-earth interface, and the electric field distribution in the air

region above the buried cable.
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Environmental Systems Division under Contract DACA39-80-K-OO01 and
The Department of the Army, U.S. Army Research Office under Contract
DAAG29-79-C-f)082 with The Ohio State University Research Foundation.
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